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ABSTRACT 
The paper presents a finite-difference scheme to solve the transient conjugated heat transfer problem in a 
concentric annulus with simultaneously developing hydrodynamic and thermal boundary layers. The 
annular forced flow is laminar with constant physical properties. Thermal transient is initiated by a step 
change in the prescribed isothermal temperature of the inner surface of the inside tube wall while the outer 
surface of the external tube is kept adiabatic. The effects of solid-fluid conductivity ratio and diffusivity 
ratio on the thermal behaviour of the flow have been investigated. Numerical results are presented for a 
fluid of Pr = 0.7 flowing in an annulus of radius ratio 0.5 with various values of inner and outer solid wall 
thicknesses. 
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NOMENCLATURE 

C specific heat capacity 
k thermal conductivity 
KR thermal conductivity ratio, ks/kf 
m number of axial increments in the 

numerical mesh network 
n number of radial increments inside the 

fluid in the numerical mesh network 
nk number of time increments in the 

numerical mesh network 
ns1 number of radial increments inside the 

inner tube in the numerical mesh 
network 

ns2 number of radial increments inside the 
outer tube in the numerical mesh 
network 

N1 inside inner tube radius ratio, r1/r3 
N2 outside inner tube ratio, r2/r3 
N4 inside outer tube ratio, r4/r3 
p pressure 

po pressure of the fluid at tube entrance 
P dimensionless pressure, (p — po)/ρfu2o 
Pr Prandtl number, vf/αf 
Qw1 dimensionless interfacial heat flux at 

the interface of inner tube and fluid, 
qw1/(uπρCf(Tw—To)) 

Qw2 dimensionless interfacial heat flux at 
interface of outer wall with fluid, 
qw2/(uπρCf(Tw—To)) 

r radial coordinate 
r1 inner radius of inner tube 
r2 outer radius of inner tube 
r3 inner radius of outer tube 
r4 outer radius of outer tube 
R dimensionless radial coordinate, r/r3 

Re Reynolds number, 

t time 
T temperature 
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Tm mixing cup temperature, 

To fluid temperature at annulus entrance 
Tw heated wall temperature 
u axial velocity 
uo average axial velocity 
U dimensionless axial velocity, u/uo 
v radial velocity 

V dimensionless radial velocity, 

y coordinate normal to parallel-plate 
channel walls 

Y dimensionless normal coordinate for a 
parallel-plate channel, y/half channel 
width 

z axial coordinate 
Z dimensionless axial coordinate, 

Greek symbols 
α thermal diffusivity 
αR thermal diffusivity ratio, αs/αf 
θ dimensionless temperature, 

(T—To)/(Tw—To) 
μ dynamic viscosity 
v kinematic viscosity 
ρ density 
τ dimensionless time, vft/r23 

Subscripts 
1 inner tube 
2 outer tube 
0 inlet or initial conditions 
f fluid properties 
R ratio 
s solid properties 
w wall conditions 
max maximum 

INTRODUCTION 

Design calculations and performance parameters of heat exchangers are usually based on the 
steady state heat transfer values. Transient heat transfer values are however required during 
periods of start-up, shut-down, and off-normal surges in steady normal operations. Besides, 
investigations on unsteady forced convection heat transfer in channels are stimulated by the 
need to procure precise thermal control of heat exchange systems. 

In conventional heat transfer analysis, it is common practice to prescribe the temperature or 
the heat flux at the fluid-wall interface. Consequently, the energy equation for the fluid alone 
has to be solved in such analyses. The results thus obtained are only good for heat transfer in 
flows bounded by walls having extremely small thermal resistance besides, in transient cases, 
infinitely large thermal difiusivity. 

However, in actual practice, the wall thermal resistance and diffusivity are finite and hence 
the thermal conditions at the fluid-wall interface are different from their counterparts imposed 
at the other surface of the solid wall. Accordingly, the thermal conditions at the fluid-wall 
interface, which are not known a priori, depend on the thermal properties and flow characteristics 
of the fluid as well as the dimensions and properties of the solid wall, and can only be obtained 
by simultaneously solving the energy equations for the fluid and solid media. Such types of 
problems, where heat conduction in the solid interacts with convective heat transfer, is often 
referred to as conjugate problems. 

Literature until 1976, pertinent to conjugate heat transfer in ducts of various geometrical 
shapes, has been reviewed by Shah and London1. Mori et al.2–4 considered the problem of 
steady conjugate heat transfer with fully developed laminar flow between parallel plates when 
there is internal heat generation in the fluid. Using finite-differences, Faghri and Sparrow5 solved 
numerically the steady conjugate heat transfer with hydrodynamically fully developed laminar 
flow in a thick-walled circular tube. The pipe was supposed to extend indefinitely in the axial 
direction, a portion of its length was uniformly heated, and axial conduction was considered in 
both the fluid and the wall. Barozzi and Pagliarini6 used a finite-element method to deal with 
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the same steady conjugate problem in a pipe of a finite length and axial conduction was considered 
in the solid only. Pagliarini7 considered the same problem with the exception that the flow is 
hydrodynamically developing. Sakakibara et al.8 analytically investigated the steady conjugate 
heat transfer problem in an annulus with a heated core and an insulated outside tube when the 
laminar flow is hydrodynamically fully developed. 

Using Laplace transform techniques, Kirshan9 analytically solved the transient conjugate 
problem for hydrodynamically and thermally fully developed laminar pipe flow with viscous 
dissipation. He obtained solutions valid for only small values of time after the outer periphery 
of the pipe undergoes a step change in heat flux or surface temperature. Recently, Olek et al.10 

considered the same problem by means of a method of separation of variables and concluded 
that the degree of conjugation and viscous dissipation may have a great impact on the temperature 
distribution in the fluid. For periodic variation of the inlet temperature, Cotta et al.11 presented 
analytical solutions for the problem with slug flow in parallel-plate and circular channels. Lin 
and Kuo12 used an implicit finite-difference scheme to obtain numerical solutions for the 
conjugate unsteady heat transfer to a hydrodynamically fully developed laminar flow (with a 
Poiseuille velocity profile) in a long circular pipe with a step change in its uniform wall heat 
flux over a finite length of the pipe wall. They considered axial conduction in both the fluid and 
the solid and investigated the influences of Peclet number, radius ratio, conductivity ratio and 
diffusivity ratio on the transient heat transfer characteristics. Neglecting axial conduction in 
both the fluid and the solid, Yan et al.13 considered the same problem but with a step change 
in the pipe-wall temperature. 

A thorough survey of the literature failed to disclose any prior investigation on the problem 
of unsteady conjugate (coupled conduction and convection) heat transfer in annular channels. 
This is in spite of the many applications which employ the annular geometry, e.g. in coolant 
channels of fuel elements of some nuclear reactors, in double pipe heat exchangers, etc. However, 
of practical importance to the case under consideration is the conventional problem of steady 
(with respect to time) flow in the entrance region of concentric annuli with simultaneously 
developing hydrodynamic and thermal boundary layers. At considerably large values of 
solid-fluid thermal diffusivity ratio and thermal conductivity ratio, besides extremely thin solid 
walls, the solution to the transient conjugate problem should asymptotically approach the 
steady-conventional solution. Hence the latter can provide a limiting case to assess the validity 
of the proposed finite-difference scheme for the transient conjugate problem and the associated 
computer program. Such conventional steady solutions were reported by El-Shaarawi14, Coney 
and El-Shaarawi15 and El-Shaarawi and Sarhan16. 

The lack of either theoretical or experimental data concerning the problem of transient 
conjugate heat transfer in annular passages, and the aforesaid practical importance of this 
problem, motivated the present work. The present paper is concerned with transient conjugate 
heat transfer to a laminar forced flow with constant physical properties in the entry region of 
a concentric annulus. Heating starts at the entrance cross-section and thus the hydrodynamic 
and thermal boundary layers are developing, with respect to the space coordinates (r and z), 
simultaneously. However, the velocity profiles are taken to be stationary (steady) with respect 
to time. Thermal transient is caused by a step change in the isothermal temperature of the inner 
surface of the core tube while the outer surface of the external tube is kept adiabatic. As a 
consequence of the assumption of constant fluid properties, the hydrodynamic boundary layers 
and their associated velocity profiles would remain stationary (steady with respect to time) after 
the thermal transient has been initiated. 

GOVERNING EQUATIONS 

Figure 1 depicts the geometry and coordinate system used. The fluid enters the annular passage 
with a uniform velocity distribution, uo, which is unchanging in time. Prior to the start of the 
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step change in the temperature of the inner surface of the core tube, the fluid may either be in 
a thermal steady-state as a result of some previous steady heat transfer process, or alternately, 
the fluid and the annulus walls may be at the same uniform temperature, To. The transient 
conjugate heat transfer process starts at t > 0. 

Assuming axisymmetric, laminar, boundary-layer flow of a Newtonian (linear viscous) fluid, 
with no internal heat generation in the fluid and its bounding inner and outer solid walls which 
have the same thermal conductivity (ks), neglecting viscous dissipation (2μ(∂u/∂z)2) and the axial 
conduction of heat in the solid walls (ks(∂2T/∂z2)) and in the fluid (kf(∂2T/∂z2)), and using the 
dimensionless parameters given in the nomenclature, the equations of continuity, z-momentum, 
energy for the fluid and energy for the inner or outer solid wall reduce to the following 
dimensionless equations, respectively: 

It is worth noting that the radial momentum equation has been eliminated due to the 
boundary-layer simplifications. However, it is possible14–16, under the numerical scheme of 
Bodoia and Osterle17, to compensate for the lack of such an equation by using the following 
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dimensionless integral continuity equation: 

Due to the assumption of constant physical properties, the energy (3) for the fluid is not 
coupled with the equations of conservation of mass and momentum (1 and 2). Thus, the 
hydrodynamics of the flow in the present work are independent of both temperature and time. 
Therefore, the equations of conservation of mass and momentum (1 and 2) can be solved to 
determine the axial and radial velocity profiles (U and V), after which the energy equations (3 
and 4) can be solved using the previously obtained velocity profiles. The initial and boundary 
conditions for the case under consideration are given in dimensionless forms hereunder: 

for Τ ≤ 0, Z = 0 and N2 ≤ R ≤ 1 
U = 1, V = 0, P = 0 and θf = 0 (6a) 

for Τ ≤ 0, Z = 0, N1 ≤ R ≤ N2 and 1 ≤ R ≤ N4 

θs = 0 (6b) 
for Τ ≤ 0, Z > 0 and N1 ≤ R ≤ N4 

θf = θs = 0 (6c) 
for Τ > 0, Z = 0 and N2< R< 1 

U = 1, P = 0, V = 0 and θf = 0 (6d) 
for Τ > 0, Z > 0, R = N2 and R = 1 

for Τ > 0, Z = 0, N1 ≤ R ≤ N2 and 1 ≤ R ≤ N4 
θ S = 0 (6f) 

for Τ > 0, Z > 0 and R = N1 

θS = 1 (6g) 
for Τ > 0, Z > 0 and R = N4 

NUMERICAL METHODOLOGY 

To convert the governing equations (l)–(4) into finite-difference equations, a 3-dimensional 
parallelpiped grid in R, Z and Τ has to be imposed on half of the channel and (i, j , k) is a typical 
mesh point; only half of the channel is needed due to symmetry about the Z-axis. The rectangular 
grid shown in Figure 2a is superimposed on half of the channel in the R–Z plane; this grid can 
be used only once to get the velocity field and it represents the thermal solution domain for 
Τ = 0. For other values of Τ, there are identical parallel grids, i.e. the dimensionless time (Τ) is 
simulated as a third coordinate normal to R–Z plane as clarified in Figure 2b. The number of 
radial increments in the inner solid wall, the fluid, and the outer solid wall are ns1, n and ns2, 
respectively. Mesh points are numbered consecutively: i progresses in the radial direction, with 
i = 1 at the inner surface of the core tube, i = ns1 + 1 at the inner fluid-solid interface, 
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i = ns1 + n + 2 at the outer fluid-solid interface, and i = ns1 + n + ns2 + 3 at the outer surface of 
the external tube; j progresses in the axial direction, with j=1 at the inlet cross section and 
j = m + 1 at the final cross section; and k progresses in the fictitious time direction, with k = 1 
at the initial state and k = nk + 1 at the final state. The value of m (number of steps in the axial 
direction) is chosen such that hydrodynamic full development is obtained and the value of nk 
is chosen such that steady-state conditions are achieved. 

Since U and V are independent of Τ and θ, the finite-difference equations corresponding to 
(1) and (2) can be constructed in the R-Z plane with the two dependent variables U and V 
having only two subscripts (i) and (j). Moreover, since P is a function of Z only, it can have 
only one subscript (j). On the other hand the three-dimensional grid depicted in Figure 2b is 
applicable to the energy equations (3) and (4) since the temperature is a three-dimensional variable. 
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The numerical scheme used in this investigation is an extension of the linearized finite-difference 
scheme reported in References 14–17; it takes the unsteady terms and conduction equations into 
consideration. Central differences and conventional three-point differences are respectively used 
to replace the first and second derivatives with respect to R. Backward differences are used to 
replace the derivatives with respect to Τ and Z. Thus the scheme is implicit in τ and Z 
(doubly-implicit). 

With replacement of the derivatives at the points (i + ½, j + 1) and (i + 1, j + 1) in the continuity 
and z-momentum equations, respectively, by finite-differences, these two equations can take the 
following forms, respectively: 

Vi + 1,j + 1 = A'iVi,j + 1 — B'i[Ui + 1,j + 1 + Ui,j + 1 — Ui + 1,j + Ui,j] (7) 
where 

and 
AiUi − 1,j + 1 + BiUi,j + 1 + CiUi + 1,j + 1 + Pj + 1 = Di (8) 

where 

and 
Di = (Ui,j)2 + Pj 

With the replacement of the derivatives at the point (i, j+1, k+1) in (3) and (4) by 
finite-differences, these two equations can be written as follows, respectively: 

where 

and 
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and 

where 

By means of the trapezoidal rule, (5) becomes: 

The numerical solution is obtained by first selecting values of the controlling parameters. The 
present conjugated heat transfer problem is dependent on six dimensionless parameters, namely, 
Pr, ΑR, KR, N1, N2, and N4. The first and fifth of these parameters (Pr) and (N2) are common 
between the present case and the conventional problem in References 14-16 while the other four 
parameters are the result of the conjugation process. 

The procedure of solving (8) and (11) to get U and P at each cross-section, after which (7) is 
used for the computation of V at the same cross-section, is discussed in Reference 15. Now, 
having obtained values of U and V at a cross-section (j), (9) and (10) associated with the conditions 
(6) can be used to obtain the temperature values at τ + ∆τ. In equations (9) and (10) 0s with 
subscript k are known and those with subscript k + 1 are unknowns. 

At a given cross-section, the application of (10) with i = 2, 3 , . . . , ns1 (in the inner solid wall) 
gives (ns1 — 1) linear algebraic equations in ns1 unknown values of θ. The application of a 
finite-difference representation of condition (6e) at i = ns1 + 1 (i.e., at R = N2) with a backward 
difference in the solid and a forward difference in the fluid gives an equation linking values of 
θ at i = ns1, ns1 + 1, ns1 + 2. Thus, the number of equations has increased by one but the number 
of unknowns has also increased by one. Now, (9) is applied with values of i from ns1 + 2 until 
ns1 + n + 1 (i.e., in the fluid region) to obtain n additional linear equations. Then, the application 
of a finite difference representation of condition (6e) at i = ns1 + n + 2 (i.e., at the outer fluid-solid 
interface) gives an equation in values of θ at i = ns1 + n + 1, ns1 + n + 2 and ns1 + n + 3. Equation 
(10) is applied at this stage with values of i from ns1 + n + 3 until ns1 + n + ns1+ 1 to give ns2 — 1 
additional equations. Finally, a backward difference representation of condition (6h) is applied 
at i = ns1 +n + ns2 + 2 to obtain one more equation. 

A summing-up of the aforesaid procedure is as follows: the applications of (9) and (10), the 
condition (6e) at the two fluid-solid interfaces, and the condition (6h) at the outer boundary, 
with i varying in a unit step from i = 2 to i = ns1 + n + ns2 + 2, gives ns1 + n + ns2 + 1 linear 
algebraic equations in the same number of θ-unknowns. By following the previously mentioned 
sequence, the matrix of coefficients of this set of equations is tridiagonal. Hence the Thomas 
method18, which requires low computer storage, can be used to obtain the unknown values of 
θ after each time step. Repeating this procedure we can advance in the time domain until the 
steady-state conditions are achieved. 
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RESULTS AND DISCUSSION 

To verify the adequacy of the present numerical solution, three special computer runs were made 
in the limiting case in which the wall-to-fluid conductivity ratio and diffusivity ratio are very 
large and the inner and outer wall thicknesses are very small (N1 and N4 are very close to N2 
and unity, respectively). The first of these two runs was made with a value of N2 very close to 
unity (to approach the parallel-plate channel; N2 = 0.99) and with a step temperature change at 
both walls. The obtained unsteady temperature profiles are compared with those of Siegel and 
Sparrow19 in Figure 3 for the single value of Z at which Siegel and Sparrow19 presented their 
results. As shown in Figure 3, the obtained temperature profiles are generally higher than those 
of Siegel and Sparrow19. This is anticipated since Siegel and Sparrow19 assumed a fully developed 
flow while in the present work the flow velocity is developing and hence enhancing the convection 
heat transfer process. However, making a second special computer run, with a fully developed 
velocity profile right from the annulus entrance, the difference between the obtained results and 
those of Siegel and Sparrow19 becomes unremarkable and the temperature profiles obtained 
are coincident of those of Siegel and Sparrow. 

The same conventional parallel-plate channel problem was solved by Cotta and Ozisik20 and 
this provides another check. Table 1 compares the obtained dimensionless wall heat flux with 
that of Cotta and Ozisik20. As can be seen from this table the present results (for N2 = 0.99) are 
in very good agreement with those of Reference 20 for values of τ ≤ 0.05; the maximum percentage 
difference is about 1.2%. However, for large values of τ (namely 0.1) the percentage difference 
is about 18.5% which is relatively high. Such a large difference (at high values of τ) is due to 
the fact that for high values of Τ (Τ > Z/Umax) the flow is far from the conduction region in which 
the presented results of Cotta and Ozisik are valid. 
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Table 1 Comparison of the results of Cotta and Ozisik20 

with those of the present scheme for the conventional 
problem in a parallel-plate channel 

τ 
0.005 
0.010 
0.030 
0.050 
0.100 

Present 

7.970 
5.660 
3.275 
2.250 
1.505 

work 

Q 

Cotta and Ozisik20 

7.979 
5.642 
3.257 
2.532 
1.784 

The third special computer run was made in the aforesaid limiting case (extremely thin walls 
of very high thermal conductivity and thermal diffusivity) and the obtained results at considerably 
large values of Τ were found in excellent agreement with the conventional steady-state results 
which were previously reported in References 1, 14–16. All these comparisons lend support for 
the adequacy of the present numerical scheme, its associated computer program and the results 
obtained. 

While computations can be conducted for any combination of the controlling dimensionless 
parameters (Pr, KR, αR, N1, N2 and N4), the objective here is to present a sample of results that 
could illustrate the phenomena pertinent to conjugation and the effect of the consideration of 
the presence of solid walls on the transient developing forced convection. The computations 
were carried out for only one value of Prandtl number, namely, 0.7, in a fluid annulus of radius 
ratio (N2) = 0.5. The radius ratio 0.5 (for the fluid region) was chosen as it represents a typical 
annular geometry far enough from the case of parallel-plate channels (for which the radius ratio 
is unity). 

Figures 4a and 4b give the variation of the radial temperature profiles with time at two selected 
axial locations, namely Z = 3 × 10−4 and 3 × 10−3. A careful investigation of these two figures 
reveals that at very small values of time, e.g. Τ = 10−5, the step temperature signal is only felt 
in the solid wall without reaching the solid-fluid interface and accordingly both the solid region 
adjacent to the flowing fluid and the fluid remain at the initial temperature. However, as the 
time elapses the internal solid temperature increases, the temperature signal penetrates in the 
solid towards the solid-fluid interface, the interface temperature eventually increases above its 
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initial value and the fluid starts to feel this temperature signal and warms up. Moreover, at large 
values of Τ (e.g. Τ = 0.002 in the Figures) and a given value of R an increase in the value of Z 
means an increase in the internal temperature of the solid wall, the interfacial solid-fluid 
temperature, or the fluid temperature. This is attributed to the growth of the hydrodynamic 
boundary-layer thickness as the fluid moves away from the entrance; the hydrodynamic boundary 
layer causes a resistance to the heat transfer process. 

Thermal and control engineers are not frequently interested in the details of the temperature 
profiles but only in the fluid mixing-cup (mixed-mean or bulk) temperature and the wall heat 
flux. The practical importance of θm derives from its use in combination with the heat capacity 
and the inlet temperature of the fluid to determine the heat gained by the fluid without need to 
get the local and then (by integration) the average heat transfer coefficients. For small values of 
Τ in an annulus having N1 = 0.4, N2 = 0.5, N4 = 1.2, KR = 10 and αR = 1, Figure 5 presents the 
dimensionless mixing-cup temperature against the dimensionless axial distance with the time (Τ) 
as a parameter. As can be seen from this figure, for a given Τ, the mixing-cup temperature reaches 
a maximum near the entrance. This phenomenon is explained as follows. At early times, the 
diffusion term represented by the RHS of (3) is the dominant term for the heat transfer process. 
In other words, at early times (Τ < Z/Umax) convection (represented by the terms containing 
velocity components on the LHS of (3)) is small compared with diffusion and the problem is 
very much similar to the conduction case. Also, the hydrodynamic boundary layer (which is 
known to cause the greatest resistance to the radial diffusion of heat) has small thickness near 
the entrance. Moreover, the radial velocity component V, which is responsible for transporting 
fluid from regions close to the heated boundary to the core region, has large values near the 
entrance and decays as the flow moves away from the entrance. Thus, near the entrance and at 
early times, there is high radial diffusion of heat besides high radial transportation of heat. These 
two simultaneous effects result in the maximization of the mixing cup temperature near the 
entrance at early times, as shown in Figure 5. 

As was explained by Faghri and Sparrow5 the local Nusselt number in conjugate heat transfer 
problems includes three unknowns, namely qw1, θw1 and θm; hence it is not very informative in 
such conjugate cases. Instead, the interfacial heat flux distribution is usually presented. The 
unsteady distribution of the non-dimensional inner wall interfacial heat flux (Qw1) is shown (for 
the same previously mentioned annulus) in Figure 6 against the dimensionless time with Z as 
a parameter. A number of interesting features are unveiled in this figure. Firstly, at early times 
(Τ < about 0.0002), Qw1 grows very quickly and it does not remarkably vary with Z (i.e., it is 
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rather uniform in the axial direction). This is due to the domination of the radial conduction 
mode over the forced convection during the initial transient as was previously explained. Secondly, 
for a given Z the interfacial heat flux reaches a maximum at early times and this maximum 
occurs at smaller values of Τ as Z decreases. Moreover, each curve corresponding to a given Z 
reaches its steady state value at large values of Τ. However, the time required to reach the steady 
state value increases as the value of Z increases. Again these latter two phenomena can be 
attributed to the previously mentioned high radial diffusion of heat (due to the thin boundary 
layer thickness) besides the high radial transportation of heat (due to large values of V) near 
the entrance (at small values of Z). Thirdly, at a given large value of Τ, as the distance from the 
entrance (Z) increases the wall heat flux decreases. This is due to the increase in the hydrodynamic 
boundary-layer thickness with Z. 

Figures 7, 8 and 9 present, for given values of Z in the previously mentioned annulus, the 
effect of the wall-to-fluid thermal conductivity ratio (KR) on the variations with time of the inner 
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interfacial temperature, the mixing cup temperature and the inner wall interfacial heat flux, 
respectively. In each of these figures curves corresponding to three values of KR are presented, 
namely, KR = 0.1, 1 and 10. These figures clearly indicate that KR has pronounced effects on 
unsteady heat transfer in laminar annular flows. For a given Τ, increasing the value of KR (i.e., 
increasing the thermal conductivity of the wall) causes an increase in the value of each of the 
three variables under consideration (θw1, θm, Qw1), as shown in these figures. Also, at a given 
time, as the value of KR increases the dimensionless temperature of the inner solid-fluid interface 
is closer to the new (step) value of the inner surface temperature of the inside tube (θ = 1). 
Moreover, by increasing the value of KR the interfacial temperature (θw1) approaches its 
steady-state value faster. This can be clearly seen in Figure 7, with KR = 10, θw1 reaches an 
almost isothermal situation after relatively short period of time (small value of Τ). This is indeed 
due to the direct increase in the wall thermal diffusivity (αs) as a result of the increase in its 
thermal conductivity. Consequently, the response of the wall to the thermal transient will be 
faster with high values of KR. 

The effects of the wall-to-fluid thermal diffusivity ratio (αK) on the unsteady conjugate heat 
transfer variables θw1 and Qw1 (for given values of Z in the same previously mentioned annulus) 
are given in Figures 10 and 11, respectively. In each figure, curves corresponding to two values 
of αR are presented, namely, αR = 0.1 and 10. As can be seen from these two figures, for a given 
(Τ > Z/Umax), increasing αR causes an increase in the interfacial wall heat flux besides a decrease 
in the inner interfacial temperature. These behaviours can be attributed as follows. A large value 
of αR implicitly means a large value of the product of the fluid density by its specific heat (ρfCf). 
If the time is large enough so that convection has already showed up, increasing the value of 
ρfCf would produce more cooling to the solid-fluid interface, hence a reduction in θw1 and an 
increase in Qw1. On the other hand, it should be noted that at very small values of τ, when the 
conduction mode dominates the heat transfer process and the convection has not showed up 
yet, the previous influences of αR on θw1 and Qw1 may be reversed as could be noted in Figure 11. 

Finally, Figure 12 shows the effect of the walls thicknesses on the inner interfacial heat flux. 
This figure is for an annulus of N2 = 0.5, KR = 10 and αR = 1. As might be expected, this figure 
shows that increasing the walls thicknesses (one or both of them) produces an increase in the 
total thermal resistance of the system and hence reduces the heat transfer from the hot wall to 
the flowing fluid. 
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CONCLUSIONS 

Transient conjugate heat transfer to laminar flows with constant physical properties and 
simultaneously developing hydrodynamic and thermal boundary layers in concentric annuli has 
been numerically studied. Thermal transient resulting from a step change in the inner surface 
temperature of the inside tube has been considered. The influences of the wall-to-fluid thermal 
conductivity ratio (KR) and thermal diffusivity ratio (αR) as well as the walls thicknesses have 
been investigated. From the presented results, it has been clearly seen that KR, αR and walls 
thicknesses have prominent effects on the transient heat transfer parameters. Therefore, it is not 
advisable to use the conventional assumption of extremely thin walls with infinite thermal 
conductivities and diffusivities particularly for systems with small values of KR and αR and very 
thick walls. 
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